
Raster-to-Vector: Revisiting Floorplan Transformation

Chen Liu
Washington University in St. Louis

chenliu@wustl.edu

Jiajun Wu
Massachusetts Institute of Technology

jiajunwu@mit.edu

Pushmeet Kohli†

DeepMind
pushmeet@google.com

Yasutaka Furukawa∗

Simon Fraser University
furukawa@sfu.ca

Figure 1: This paper makes a breakthrough in the problem of converting raster floorplan images to vector-graphics representations. From left
to right, an input floorplan image, reconstructed vector-graphics representation visualized by our custom renderer, and a popup 3D model.

Abstract

This paper addresses the problem of converting a raster-
ized floorplan image into a vector-graphics representation.
Unlike existing approaches that rely on a sequence of low-
level image processing heuristics, we adopt a learning-based
approach. A neural architecture first transforms a rasterized
image to a set of junctions that represent low-level geomet-
ric and semantic information (e.g., wall corners or door
end-points). Integer programming is then formulated to ag-
gregate junctions into a set of simple primitives (e.g., wall
lines, door lines, or icon boxes) to produce a vectorized
floorplan, while ensuring a topologically and geometrically
consistent result. Our algorithm significantly outperforms
existing methods and achieves around 90% precision and
recall, getting to the range of production-ready performance.
The vector representation allows 3D model popup for better
indoor scene visualization, direct model manipulation for
architectural remodeling, and further computational applica-
tions such as data analysis. Our system is efficient: we have

∗At Washington University in St. Louis at the time of the project.
†At Microsoft Research Redmond at the time of the project.

converted hundred thousand production-level floorplan im-
ages into the vector representation and generated 3D popup
models.

1. Introduction

Architectural floorplans play a crucial role in designing,
understanding, or remodeling indoor spaces. Their drawings
are very effective in conveying geometric and semantic in-
formation of a scene. For instance, we can quickly identify
room extents, the locations of doors, or object arrangements
(geometry). We can also recognize the types of rooms, doors,
or objects easily through texts or icon styles (semantics).

While professional architects or designers draw floorplans
in a vector-graphics representation using software such as
AutoCAD [1], HomeStyler [3], or Sketchup [5], the final use
of an artwork is often just visualization for clients (e.g., home
buyers or renters). As a result, floorplans are rasterized to
print or digital media for publication. This process discards
all the structured geometric and semantic information, limit-
ing human post-processing or further computing capabilities
such as model analysis, synthesis, or modification.

1



Recovering the lost information from a rasterized floor-
plan image is a surprisingly hard task and has been a long-
standing open problem. The problem poses two fundamental
challenges. First, floorplan structure must satisfy high-level
geometric and semantic constraints. For instance, walls cor-
responding to an external boundary or certain rooms must
form a closed 1D loop. Second, this high-level model struc-
ture varies across examples (e.g., different houses have dif-
ferent numbers of bedrooms). Computer vision has recently
witnessed dramatic progresses on similar high-level model
prediction tasks, such as human hand or body pose estima-
tion. In those problems, however, the model structure is
fixed: Human hands have five fingers. In our problem, both
the model structure as well as parameters need to be inferred.

This paper proposes a novel solution to the problem
of raster-to-vector floorplan transformation. Existing tech-
niques typically rely on a sequence of low-level image pro-
cessing heuristics [14]. Our approach integrates a deep net-
work and an integer programming through two novel in-
termediate floorplan representations. First, a deep network
extracts low-level geometric and semantic information into a
set of junctions (i.e., points with types) as the first representa-
tion. For example, a wall structure is represented as a set of
junctions of four different types, depending on the degree of
its connections. Note that we assume Manhattan world and
restrict candidate lines or boxes to be axis-aligned. Second,
an integer programming (IP) aggregates junctions into a set
of simple primitives (e.g., walls as lines and icons as boxes).
IP enforces higher-level constraints among primitives, for
instance, a room as a chain of wall primitives forming a
closed loop. This ensures that a simple post-processing step
can produce a complete vector representation,

We have manually annotated 870 floorplan images for
training as well as for quantitative evaluation. The pro-
posed algorithm significantly outperforms existing meth-
ods with around 90% precision and recall, getting closer
to production-ready performance. We believe that this pa-
per makes progress in understanding floorplans with a new
approach achieving a significant performance boost, a large-
scale benchmark for evaluating future algorithms, and a large
corpus of vector floorplan data and popup 3D models, open-
ing potentials for a new family of Computer Vision research.

2. Related work
Raster to vector conversion of floorplan images has a long

history in Pattern Recognition. Existing approaches gener-
ally rely on a sequence of low-level image processing heuris-
tics. The first critical step is the separation of the textual data
from the graphical ones. Textual data (the dimensions, room
labels, etc.) can be separated by finding connected compo-
nents, removing those that are either too small, too large, or
too far away from other texts, and identifying the bounding
boxes (i.e., OCR process) [21]. For graphical data, lines are

the fundamental primitives to be extracted first. Morpho-
logical operations, Hough transform, or image vectorization
techniques are used to extract lines, normalize line width, or
group them into thin/medium/thick lines [6, 11]. Detected
lines are used to identify walls, where existing approaches
require various heuristics, such as convex hull approxima-
tion, polygonal approximation, edge-linking to overcome
gaps, or the color analysis along lines [18, 6]. Doors and
windows exist in walls, and are detected by either looking
at the openings on walls [6] or symbols spotting techniques
[18]. Alternatively, image recognition techniques such as a
bag of visual words can be used [11]. Finally, rooms can
be extracted by decomposing images [18] or finding the
connected components surrounded by the walls, assuming
that rooms are always separated by walls [11]. Existing sys-
tems often consist of several steps with various heuristics
in each processing unit. Their level of performance falls
far behind that of human annotators or what is required for
production. This paper significantly improves results in the
literature with a fundamentally new approach consisting of
two computational machineries, deep representation learning
and integer programming.

One major problem of current floorplan conversion re-
search is the lack of a representative large-scale dataset.
Heras et al. [12] combined multiple existing datasets to ac-
quire vector-graphics representation groundtruth for 122
floorplans. Liu et al. [17] provided a dataset which contains
215 floorplans and associated images for the floorplan-image
alignment problem. However, their dataset does not fit our
purpose due to the small quantity and the limited variations
in style. In contrast, we have annotated 870 images and
tested our system on 100,000 unannotated images.

Besides the raster-to-vector transformation problem, the
Computer Vision community has tackled various problems
involving floorplan images. Photograph to floorplan align-
ment has been an active research topic in recent years,
with applications ranging from image localization [19, 10],
navigation [22, 10], to real-estate content creation [17].
Pointcloud to floorplan alignment has also been studied for
building-scale 3D scanning [23]. Indoor 3D reconstruction
from images [13], depth-images [9], or laser-scanned point-
clouds [20, 8, 16, 24] are also closely related to floorplan
modeling. However, the critical difference is that these 3D
reconstruction methods recover a surface representation (i.e.,
a wall as two surfaces instead of one thickened plane), and
do not explicitly model the wall structure as a skeleton for
instance. The surface-based representation suffices for ren-
dering, but cannot allow standard floorplan editing operation,
such as moving walls to change room sizes, or thinning walls
for a new style. The goal of this paper is to recover a vector
representation of a floorplan as a CAD model, which enables
human post-processing or further computing applications.



Figure 2: Our approach converts a floorplan image through two intermediate representation layers. A neural architecture first converts a
floorplan image into a junction layer, where data is represented by a set of junctions (i.e., points with types) or per-pixel semantic classification
scores. An integer programming aggregates junctions into a set of primitives (i.e., lines or boxes), while ensuring a topologically and
geometrically consistent result. A simple post-processing can be used to produce the final vector format.

3. Stratified floorplan representation
Instead of directly solving for the vector representation

with high-level structure, we take a stratified approach and
convert a floorplan image through two intermediate floorplan
representations (See Fig. 2). This stratified approach effec-
tively integrates the use of a Convolutional Neural Network
(CNN) and Integer Programming (IP), where the network
extracts low-level geometric and semantic information as
junctions, and IP aggregates junctions into primitives while
enforcing high-level structural constraints.

In the intermediate layers, the floorplan data are repre-
sented by three factors: walls, openings (doors or windows),
or icons. Note that we do not have a factor corresponding to
rooms, which will come out in the final post-processing step.
Door and window symbols are usually indistinguishable, and
are modeled as the same “openings”. In our system, we treat
an opening as a window if one side of the opening is outside
in the final vector format, except for the main door which sits
next to the entrance. This section explains how we encode
those factors through our intermediate layers, namely the
junction layer and the primitive layer.

3.1. Junction layer

The first layer encodes factors as a set of junctions (i.e.,
points with types).

• Wall structure is represented by a set of junctions where
wall segments meet. There are four wall junction types,
I-, L-, T-, and X-shaped, depending on the degrees
of incident wall segments (c.f . Fig. 3). Considering

orientations, there are in total 13 (= 4 + 4 + 4 + 1)
types.

• An opening is a line represented by opening junctions
at its two end-points. Considering rotational variations,
there are 4 types of opening junctions.

• An icon is represented by an axis aligned bounding box,
and hence, icon junctions consist of four types: top-left,
top-right, bottom-left, or bottom-right.

The junction layer also has two types of per-pixel proba-
bility distribution maps over different semantic types. The
first map distinguishes if a pixel belongs to a wall or a cer-
tain room type. The map is a probability distribution func-
tion (PDF) over 12 different classes, as there are 11 room
types: living-room, kitchen, bedroom, bathroom, restroom,
washing-room, balcony, closet, corridor, pipe space, or out-
side. The second map distinguishes if a pixel belongs to
an opening, a certain icon type or empty. The map is a
PDF over 10 different classes, as there are 8 icon types:
cooking counter, bathtub, toilet, washing basin, refrigerator,
entrance mat, column, or stairs. Note that a pixel can be both
a bathroom (first map) and a bathtub icon (second map).

3.2. Primitive layer

The second layer encodes the three factors as low-level
geometric primitives. A wall or an opening primitive is rep-
resented as a line, namely a valid pair of junctions. Similarly,
an icon primitive is represented as a box, that is, a valid
quadruple of junctions. Here, ”validity” denotes if junctions



Figure 3: There are four wall junction types: I-, L-, T-, and X-
shaped, depending on the degrees of incident wall segments. Con-
sidering orientations, we have in total 13 (= 4+ 4+ 4+ 1) types.

can be connected given their orientations. Each primitive is
also associated with some semantics information.

• A wall primitive is associated with room types at its both
sides. The possible room types are the same as in the junction
layer.
• An opening primitive, which is either a door or a window,
does not have any semantics associated at this layer, as doors
and windows are indistinguishable on our floorplan images.
• An icon primitive is associated with one of the icon types,
which are the same as in the junction layer.

Primitives must satisfy a variety of constraints so that a
simple post-processing can extract a floorplan vector repre-
sentation with high-level structure. For example, a bedroom
must be represented by a set of wall primitives that form a
closed-loop and have consistent room type annotation on
one side. The constraints are enforced in solving the Integer
Programming as explained in Section 4.2.

4. Raster to vector conversion
Our system consists of three steps. First, we employ a

CNN to convert a raster floorplan image into the first junction
layer (i.e., junction maps and per-pixel room-classification
scores). Second, after generating primitive candidates from
junctions based on simple heuristics, we use Integer Program-
ming to select the right subset while enforcing high-level
geometric and semantic constraints. Third, a simple post-
processing is used to convert the floorplan data into the final
vector-graphics representation. We now explain each step.

4.1. Junction layer conversion via a CNN

CNNs have been proven to be very powerful in extracting
low-level information from images. Our junction and per-
pixel classification representation allows straight-forward
application of CNNs. We borrow the residual part of the de-
tection network from [7], which modified ResNet-152 [15]
to predict heatmaps at pixel-level. We drop their last de-
convolution layer, and append three deconvolution layers in

parallel, one for junction heatmap regression and two for
per-pixel classifications. For junctions, there are at total
21(= 13 + 4 + 4) different types, and one heatmap is re-
gressed for each type, where pixelwise sigmoid cross entropy
loss is applied. For classification tasks, we use pixelwise soft-
max cross entropy loss. We train three branches jointly, and
the final loss is a weighted summation with larger weight,
20, only for junction heatmap regression. Both the input
and output have resolution 256x256. Besides common data
augmentation techniques like random cropping and color
jittering, we also rotate the image with an angle randomly
picked from 0◦, 90◦, 180◦, and 270◦. During inference, we
threshold junction heatmaps with 0.4 (slightly lower than 0.5
to bring in more junction candidates for IP to choose), and
apply non-maximum suppression to extract junctions.

While the network makes very good predictions of junc-
tion locations, it sometimes mis-classfies junction types (e.g.,
mis-classifies a L-shaped junction as T-shaped). To make the
detection robust, we allow one mistake in the estimation of
the degree. For example, for each detected T-shaped junction,
we hallucinate two L-shaped junctions and one X-shaped
junction at the same location. The integer programming will
enforce later that at most one of the junctions can be used.
We found that mis-classification between I and L is rare, and
perform the hallucination for all the other cases.

4.2. Primitive layer conversion via IP

Deep network makes very good predictions and simple
heuristics suffice to extract primitive candidates (i.e., walls,
openings, and icons). Integer programming then finds the
correct subset while enforcing various geometric and seman-
tic constraints. With the small problem size, it takes around
2s to find the optimal solution to IP using Gurobi [2].

4.2.1 Primitive candidate generation

A wall primitive can be formed by two wall junctions if
1) they are axis-aligned with a tolerance of 10 pixels, and
2) their aligned orientation is compatible with the junction
orientations. Similarly, two door junctions can form a door
primitive if qualified. For icons, four axis-aligned junctions
(top-left, top-right, bottom-right, and bottom-left) together
form an icon primitive.

4.2.2 Integer programming

Integer Programming enforces geometric and semantic con-
straints among primitives to filter out spurious primitive
candidates and guarantee properties of floorplan data, which
must hold true. For instance, a bedroom must be surrounded
by a set of walls forming a 1D loop, with a bedroom type
associated with the correct side of each wall primitive.



Variable definition: We define indicator variables for junc-
tions, primitives, and semantic types:
• Jwall(j), Jopen(j), Jicon(j) for junctions,
• Pwall(p), Popen(p), Picon(p) for primitives,
• SL

wall(p, s), S
R
wall(p, s), Sicon(p, s) for semantics.

j, p and s denote indexes for junctions, primitives and possi-
ble semantic types, respectively. For instance, Popen(p) is
an indicator variable encoding if the pth opening primitive
exists or not. Indicator variables for semantics employ one-
hot encoding and have two indexes, a primitive index and a
semantic type index. Lastly, a wall primitive is associated
with two room types as semantics on its both sides. For
instance, SL

wall(p, s) indicates if the pth wall primitive has
the sth room type on the left hand side.

Objective function: The objective function for maximiza-
tion is a linear combination of the junction and semantic
indicator variables, where weights are defined as follows:
• The weight is 10 for all the junctions except for the

hallucinated wall junctions, whose weight is set to −5
(See Section 4.1). In other words, we encourage the use
of the primitives as much as possible, but discourage
the use of the hallucinated ones.
• The weights for the semantic indicator variables are

calculated based on the per-pixel classification scores
in the junction layer. For an icon type indicator variable,
the weight is simply the average icon type classification
score inside the box. For a room type indicator variable
associated with a wall primitive on one side, we use the
average room type classification score in its neighbor-
hood. A neighborhood is obtained by sweeping pixels
on the wall primitives along its perpendicular direction
(on the side of the room type variable). Each pixel is
swept until it hit another wall primitive candidate.

We have not used primitive indicator variables in the ob-
jective function, as similar information has been already
captured by the junction primitives.

Constraints: We enforce a variety of constraints either as
linear equalities or linear inequalities.
• One-hot encoding constraints: When a wall primitive

does not exist (i.e., Pwall(p) = 0), its wall semantic
variables must be all zero. When it exists, one and only
one semantic variable must be chosen. The same is true
for icon primitives, yielding the following constraints.

Pwall(p) =
∑
s

SL
wall(p, s) =

∑
s

SR
wall(p, s),

Picon(p) =
∑
s

Sicon(p, s).

• Connectivity constraint: The degree (i.e., the number
of connections) of a junction must match the number
of incident primitives that are chosen. This applies to

Figure 4: Loop constraints can be enforced locally at each junction.
The room types must be the same for each pair of walls marked
with the same color.

walls, openings and icons, and here we only show the
constraint for the walls, where the summation is over
all the wall primitives connected with the wall junction:

{# degree}Jwall(j) =
∑

Pwall(p).

• Mutual exclusion constraints: Two primitives cannot
be chosen when they are spatially close, in particular,
within 10 pixels. We find every pair of such primitives
and enforce that the sum of their indicator variables
is at most 1. The same constraint is also applied to
wall junctions to ensure that two wall junctions are
not close and hallucinated junctions are not selected
simultaneously with the original one.
• Loop constraints: Bedroom, bathroom, restroom, bal-

cony, closet, pipe-space, and the exterior boundary must
form a closed loop (allowing some walls that stick out).
It turns out that this high-level rule can be enforced
by local constraints at every wall junction. We use a
T-shaped wall junction to explain our idea in Fig. 4.
Room types must be the same for a pair of walls with
arrows of the same color in the figure.
• Opening constraints: An opening (a door or a window)

must be on a wall. For each opening primitive, we
find a list of wall primitives that contain the opening
(parallel to the opening with distance smaller than 10
pixels) and enforce the following. Note that the right
summation is over all the collected wall primitives.

Popen(p) ≤
∑

Pwall(p).

4.3. Final data conversion

The IP output is close to the final representation with a
few issues remaining. First, junctions are not well-aligned,
because we allow some coordinate error when finding con-
nections. The alignment issue can be simply fixed by averag-
ing the junction coordinates along a straight line. The second
issue is that doors are not sitting exactly on walls. To fix this
issue, we move each door to align with its closest wall. The
last issue is the missing of high-level room information, as
room labels are currently associated with walls locally. To
derive room information, we first find all the closed polygons
formed by walls. If all the walls of a polygon share the same



room label, then polygon forms a room with that label. For a
polygon with multiple labels, we further split the polygon by
either horizontal lines or a vertical lines into sub-regions, and
associate each sub-region with a room label. The detailed
split algorithm is in the supplementary material.

5. Evaluations
The section explains 1) our data collection process; 2)

evaluation metrics; 3) quantitative evaluations; and 4) quali-
tative evaluations.

5.1. Annotating a Floorplan Dataset

To fully exploit data-hungry neural architecture, we
have built a large-scale dataset with groundtruth for vector-
graphics floorplan conversion, based on the LIFULL
HOME’S dataset [4] which contains 5 million floorplan
raster images. To create the groundtruth, we randomly sam-
ple 1,000 floorplan images and ask human subjects to anno-
tate the geometric and semantic information for each floor-
plan image. An annotator can draw a line representing either
a wall or an opening, draw a rectangle and pick an object
type for each object, or attach a room label at a specific
location. We then convert the annotated information to our
representation. The conversion is straightforward, and please
refer to our supplementary material for details. We perform
automatic checks to make sure that all the geometric and
semantic constraints discussed in Section 4.2.2 are satis-
fied. After this verification, we manually go through all the
annotations to correct the remaining mistakes. After drop-
ping images with poor qualities, we collect 870 groundtruth
floorplan images. As a benchmark, 770 of them are used
for network training, while the remaining 100 examples are
served as test images.

5.2. Metrics

We compute the precision and recall scores for wall-
junctions, opening primitives, icon primitives, and rooms.
For a prediction to be correct, its distance to a target must
be the smallest compared to the other prediction, and less
than a threshold. For wall junctions, we use Euclidean dis-
tance, and threshold τw. For opening primitives, the dis-
tance between a prediction and a target is the larger value
of Euclidean distances between two pairs of corresponding
endpoints, and the threshold is τo. For objects and rooms, we
calculate Intersection Over Union (IOU), and use 1− IOU
as distance (with threshold τo and τr respectively). We set
τw = τd = 0.01max(W,H), τo = 0.5 and τr = 0.3, where
W and H denote the image resolution.

5.3. Quantitative evaluations

We evaluate our results on our benchmark images using
the metrics mentioned in Section 5.2 (See Table 1). We

have implemented the algorithm in [6] as a baseline. We
have not implemented OCR for detecting rooms labels in
their algorithm, as we could not find a free open-source
OCR system that handles the mix of Japanese and English.
However, we believe that the use of OCR is comparable to
our deep-network based solution. Their method also ignores
objects, so we only evaluate the wall and door detection
in their method and show results in Table 1. The table
also shows the performance of our approach with various
algorithmic features removed for an ablation study.

To evaluate the effectiveness of each constraint in IP, we
disable one constraint each time and record the performance.
Note that we have not evaluated the one-hot encoding con-
straints and the connectivity constraints, since they are es-
sential. Table 1 shows that when full IP is performed, we
improve precision consistently over the results without IP.
The mutual exclusion constraints introduce the competition
between conflicting primitives, and thus filter out many false-
positives. This filtering process improves all precisions by a
large margin, with only small sacrifice in recall for openings
and objects. On the contrary, the recall for rooms increases
due to the more accurate room shapes formed by walls. The
loop constraints improve the precision for rooms by 2%.
This improvement is critical in some cases to ensure the
visual quality of conversion. The opening constraints ensure
that no opening appears without a wall.

5.4. Qualitative evaluations

Figure 5 shows an input floorplan image, the recon-
structed vector representation visualized by our own ren-
derer, and a popup 3D model for each example. In our
rendering, a wall junction is highlighted as a disk with a red
border, an opening primitive is shown with a black dashed
line, an object primitive is shown as an icon with different
styles, depending on the inferred semantics. We also change
the background color of each room based on its type. The
popup 3D model is generated by extruding wall primitive
to a certain height, adding window or door textures at the
location of opening primitives (an opening becomes a win-
dow, if it faces outside), and placing 3D objects models in
the bounding box of icon primitives.

We have manually verified the correctness of the floor-
plan data, which are shown by the three numbers for the wall
junctions, opening primitives, icon primitives, and rooms.
For example, (57/59/60) means that there are 59 target pre-
dictions to make, where our algorithm makes 60 predictions
and collected 57 correct ones. Verified by the quantitative
evaluation, our algorithm is able to recover near complete
floorplan models despite of varying styles (e.g., black and
white, colored background, or textured background mixing
Japanese, English, and Chinese characters). Please refer to
the supplementary material for more results. We have run our
algorithm on 100,000 raster images to recover their vector-



Figure 5: Floorplan vectorization results. From left to right, an input floorplan image, reconstructed vector-graphics representation visualized
by our custom renderer, and the corresponding popup 3D model. We have manually checked the correctness of each junction and primitive
estimation, whose statistics are shown under each example.



Method Wall Junction Opening Icon Room

Acc. Recall Acc. Recall Acc. Recall Acc. Recall

Ahmed et al. [6] 74.9 57.5 61.3 48.7 N/A N/A N/A N/A

Ours (without IP) 70.7 95.1 67.9 91.4 22.3 77.4 80.9 78.5
Ours (without mutual exclusion constraints) 92.8 91.7 68.5 91.1 22.0 76.2 82.8 87.5
Ours (without loop constraints) 94.2 91.5 91.9 90.2 84.3 75.0 82.5 88.2
Ours (without opening constraints) 94.6 91.7 91.7 90.1 84.0 74.8 84.3 88.3
Ours (with full IP) 94.7 91.7 91.9 90.2 84.0 74.6 84.5 88.4

Table 1: Quantitative evaluations based on our benchmark.

Figure 6: Typical failure cases. Relying on Manhattan assumption,
our method is unable to detect walls which are neither horizontal
nor vertical as shown in the first example. In the second example,
our method puts a wall which does not exist.

graphics representation and 3D popup models. Though rare,
there are some typical failure cases as shown in Fig. 6.

Lastly, we have evaluated the generalization capability of
our system by processing floorplan images from other data
sources. Figure 7 shows our results on two such examples:
one from Rent3D database [17], and the other from Google
image search with a search keyword ”floorplan”. Despite
the fact that these two images have very distinctive styles
from examples in our dataset, our system has successfully
reconstructed most walls and openings. Due to dramatic
differences in styles, semantic information (i.e., icon types
and room types) is often mis-recognized. Again please refer
to the supplementary material for more results.

6. Conclusion

We have presented a novel approach to the classical prob-
lem of converting a rasterized floorplan image into a vector-
graphics representation. Instead of relying on low-level
image processig heuristics, our approach invents two inter-
mediate representations encoding both geometric and seman-
tic information of a floorplan image. We employ a neural
architecture to convert an input rasterized image into a set of
junctions and per-pixel semantic classification scores as the

Figure 7: Floorplan vectorization results on an image in Rent3D
(top) and an image from the web (bottom).

first representation. Integer programming then aggregates
junctions into line or box primitives as the second repre-
sentation, while ensuring topologically and geometrically
consistent result. We believe that the paper makes a key
milestone in the literature with a novel approach achieving a
significant performance boost, a large-scale benchmark for
evaluation, and a large corpus of floorplan vector data and
popup 3D models, opening potentials for a new family of
big-data Computer Vision research.

7. Acknowledgement
This research is partially supported by National Sci-

ence Foundation under grant IIS 1540012 and IIS 1618685,
Google Faculty Research Award, and Microsoft Azure Re-
search Award. Jiajun Wu is supported by an Nvidia fellow-
ship. We thank Nvidia for a generous GPU donation.



References
[1] Autocad. http://www.autodesk.com/products/

autocad/overview. 1
[2] Gurobi. http://www.gurobi.com. 4
[3] Homestyler. http://www.homestyler.com. 1
[4] LIFULL HOME’S dataset. http://www.nii.ac.jp/

dsc/idr/next/homes.html. 6
[5] Sketchup. https://www.sketchup.com. 1
[6] S. Ahmed, M. Liwicki, M. Weber, and A. Dengel. Improved

automatic analysis of architectural floor plans. In Document
Analysis and Recognition (ICDAR), 2011 International Con-
ference on, pages 864–869. IEEE, 2011. 2, 6, 8

[7] A. Bulat and G. Tzimiropoulos. Human pose estimation via
convolutional part heatmap regression. In European Confer-
ence on Computer Vision, pages 717–732. Springer, 2016.
4

[8] G. Chen, J. Kua, S. Shum, N. Naikal, M. Carlberg, and A. Za-
khor. Indoor localization algorithms for a human-operated
backpack system. In 3D Data Processing, Visualization, and
Transmission, page 3. Citeseer, 2010. 2

[9] S. Choi, Q.-Y. Zhou, and V. Koltun. Robust reconstruction
of indoor scenes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5556–5565,
2015. 2

[10] H. Chu, D. Ki Kim, and T. Chen. You are here: Mimicking the
human thinking process in reading floor-plans. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 2210–2218, 2015. 2

[11] L.-P. de las Heras, S. Ahmed, M. Liwicki, E. Valveny, and
G. Sánchez. Statistical segmentation and structural recogni-
tion for floor plan interpretation. International Journal on
Document Analysis and Recognition (IJDAR), 17(3):221–237,
2014. 2

[12] L.-P. de las Heras, O. Terrades, S. Robles, and G. Sánchez.
Cvc-fp and sgt: a new database for structural floor plan anal-
ysis and its groundtruthing tool. International Journal on
Document Analysis and Recognition, 2015. 2

[13] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Recon-
structing building interiors from images. In Computer Vision,
2009 IEEE 12th International Conference on, pages 80–87.
IEEE, 2009. 2

[14] L. Gimenez, J.-L. Hippolyte, S. Robert, F. Suard, and K. Zreik.
Review: reconstruction of 3d building information models
from 2d scanned plans. Journal of Building Engineering,
2:24–35, 2015. 2

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 770–778,
2016. 4

[16] S. Ikehata, H. Yang, and Y. Furukawa. Structured indoor mod-
eling. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1323–1331, 2015. 2

[17] C. Liu, A. G. Schwing, K. Kundu, R. Urtasun, and S. Fidler.
Rent3d: Floor-plan priors for monocular layout estimation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3413–3421, 2015. 2, 8

[18] S. Macé, H. Locteau, E. Valveny, and S. Tabbone. A system
to detect rooms in architectural floor plan images. In Proceed-
ings of the 9th IAPR International Workshop on Document
Analysis Systems, pages 167–174. ACM, 2010. 2

[19] R. Martin-Brualla, Y. He, B. C. Russell, and S. M. Seitz. The
3d jigsaw puzzle: Mapping large indoor spaces. In European
Conference on Computer Vision, pages 1–16. Springer, 2014.
2

[20] C. Mura, O. Mattausch, A. J. Villanueva, E. Gobbetti, and
R. Pajarola. Automatic room detection and reconstruction
in cluttered indoor environments with complex room layouts.
Computers & Graphics, 44:20–32, 2014. 2

[21] K. Tombre, S. Tabbone, L. Pélissier, B. Lamiroy, and P. Dosch.
Text/graphics separation revisited. In International Workshop
on Document Analysis Systems, pages 200–211. Springer,
2002. 2

[22] S. Wang, S. Fidler, and R. Urtasun. Lost shopping! monocular
localization in large indoor spaces. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2695–2703, 2015. 2

[23] E. Wijmans and Y. Furukawa. Exploiting 2d floorplan for
building-scale panorama rgbd alignment. arXiv preprint
arXiv:1612.02859, 2016. 2

[24] F. Yan, L. Nan, and P. Wonka. Block assembly for global
registration of building scans. ACM Transactions on Graphics
(TOG), 35(6):237, 2016. 2

http://www.autodesk.com/products/autocad/overview
http://www.autodesk.com/products/autocad/overview
http://www.gurobi.com
http://www.homestyler.com
http://www.nii.ac.jp/dsc/idr/next/homes.html
http://www.nii.ac.jp/dsc/idr/next/homes.html
https://www.sketchup.com

