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The supplementary material explains our modifications
to the three baseline methods to enable their executions on
our problem setting (i.e., a single image input).

NYU Toolbox is the first baseline [2]. We follow Wang et
al. [3] and add the same extension to the toolbox as follows:
If a plane occupies more than 90% pixels of a semantic mask,
the entire semantic mask will be assigned to that plane.

Manhattan World Stereo (MWS) requires a 3D point cloud
as the input [1]. Instead of using multi-view stereo, we un-
project the input depthmap to obtain a point cloud. The
data term in their MRF formulation requires the visibility
information associated with multiple views. The information
does not exist for our case, and we instead use the data term
in NYU Toolbox [2]. This term utilizes pixel-wise surface
normals, which are calculated from the depthmap.

Piece-wise Planar Stereo (PPS) extracts vanishing direc-
tions (instead of the three Manhattan axes) and generates
plane hypotheses from every pair of the extracted direc-
tions. PPS also reconstructs 3D lines by multi-view stereo
techniques and fits additional planes, whose step is impos-
sible and excluded in our experiments. However, we do
not expect much performance degradation, as our input is a
dense depthmap and most of the line information are covered
through vanishing line extraction. The input point-cloud is
generated by un-projecting the input depthmap as in the case
of MWS. The data term in the MRF formulation is again
replaced by the one in NYU Toolbox.
Applying the model trained on ScanNet to NYUv2. We
found that as shown in Figure 1 the network before fine-
tuning is able to predict reasonable planes and their masks
while the network after fine-tuning predicts less but more
confident planes; 2) the predicted depth map before fine-
tuning has a global bias towards shallow scenes and the
fine-tuning seems to correct this bias. We hypothesize that
without plane supervision during fine-tuning, the network
chooses an easier path to learn the non-plane depth values
instead of planes.

Figures 2, 3 and 4 show more results of our method on

Figure 1: The first column shows the input image and the ground-
truth depth map. The second column shows the results (plane
segmentation and final depth map) generated by the network before
fine-tuning. The third column shows the results after fine-tuning.

the ScanNet and NYUv2 datasets.
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Figure 2: More experimental results on the ScanNet dataset. From left to right: an input image, plane segmentation, depthmap reconstruction,
and 3D rendering of our depthmap.



Figure 3: More experimental results on the ScanNet dataset. From left to right: an input image, plane segmentation, depthmap reconstruction,
and 3D rendering of our depthmap.



Figure 4: More experimental results on the NYUv2 dataset. From left to right: an input image, plane segmentation, depthmap reconstruction,
and 3D rendering of our depthmap. The network is fine-tuned on the dataset without plane supervision, and our algorithm tends to miss
small planes at cluttered regions.


